CO2 Forest: Improved Random Forest by Continuous Optimization of Oblique Splits
نویسندگان
چکیده
We propose a novel algorithm for optimizing multivariate linear threshold functions as split functions of decision trees to create improved Random Forest classifiers. Standard tree induction methods resort to sampling and exhaustive search to find good univariate split functions. In contrast, our method computes a linear combination of the features at each node, and optimizes the parameters of the linear combination (oblique) split functions by adopting a variant of latent variable SVM formulation. We develop a convex-concave upper bound on the classification loss for a one-level decision tree, and optimize the bound by stochastic gradient descent at each internal node of the tree. Forests of up to 1000 Continuously Optimized Oblique (CO2) decision trees are created, which significantly outperform Random Forest with univariate splits and previous techniques for constructing oblique trees. Experimental results are reported on multi-class classification benchmarks and on Labeled Faces in the Wild (LFW) dataset.
منابع مشابه
On Oblique Random Forests
Abstract. In his original paper on random forests, Breiman proposed two different decision tree ensembles: one generated from “orthogonal” trees with thresholds on individual features in every split, and one from “oblique” trees separating the feature space by randomly oriented hyperplanes. In spite of a rising interest in the random forest framework, however, ensembles built from orthogonal tr...
متن کاملMarket Adaptive Control Function Optimization in Continuous Cover Forest Management
Economically optimal management of a continuous cover forest is considered here. Initially, there is a large number of trees of different sizes and the forest may contain several species. We want to optimize the harvest decisions over time, using continuous cover forestry, which is denoted by CCF. We maximize our objective function, the expected present value, with consideration of stochastic p...
متن کاملT3C: improving a decision tree classification algorithm's interval splits on continuous attributes
This paper proposes, describes and evaluates T3C, a classification algorithm that builds decision trees of depth at most three, and results in high accuracy whilst keeping the size of the tree reasonably small. T3C is an improvement over algorithm T3 in the way it performs splits on continuous attributes. When run against publicly available data sets, T3C achieved lower generalisation error tha...
متن کاملStochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملImprovement of Biomass Estimation in Forest Areas based on Polarimetric Parameters Optimization of SETHI airborne Data using Particle Swarm Optimization Method
Estimation of forest biomass has received much attention in recent decades. Airborne and spaceborne (SAR) have a great potential to quantify biomass and structural diversity because of its penetration capability. Polarizations are important elements in SAR systems due to sensitivity of them to backscattering mechanisms and can be useful to estimate biomass. Full Polarimetric Synthetic Aperture ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1506.06155 شماره
صفحات -
تاریخ انتشار 2015